Computing

A nanopore interface for higher bandwidth DNA computing

  • Zhang, DY, Turberfield, AJ, Yurke, B. & Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Sci. (80-.) 3181121–1125 (2007).

    ADS CAS Article Google Scholar

  • Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Sci. (80-.) 3321196–1201 (2011).

    ADS CAS Article Google Scholar

  • Seelig, G., Soloveichik, D., Zhang, DY & Winfree, E. Enzyme-free nucleic acid logic circuits. Sci. (80-.) 3141585–1588 (2006).

    ADS CAS Article Google Scholar

  • Cherry, KM & Qian, L. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 559370–388 (2018).

    ADS CAS PubMed Article Google Scholar

  • Soloveichik, D., Seelig, G. & Winfree, E. DNA as a universal substrate for chemical kinetics. Proc. Natl Acad. Sci. USA 1075393–5398 (2010).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Chen, YJ et al. Programmable chemical controllers made from DNA. born Nanotechnol. 8755–762 (2013).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Srinivas, N., Parkin, J., Seelig, G., Winfree, E. & Soloveichik, D. Enzyme-free nucleic acid dynamical systems. Science (80-.). 358(2017) 10.1126/science.aal2052.

  • Zhang, C. et al. Cancer diagnosis with DNA molecular computation. born Nanotechnol. 2020 158 15709–715 (2020).

    CAS Google Scholar

  • Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475368–372 (2011).

    CAS PubMed Article Google Scholar

  • Zhang, DY & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. I am. 13117303–17314 (2009).

    CAS PubMed Article Google Scholar

  • Zhang, DY & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. born Chem. 3103–113 (2011).

    CAS PubMed Article Google Scholar

  • Yurke, B., Turberfield, AJ, Mills, AP, Simmel, FC & Neumann, JL A DNA-fueled molecular machine made of DNA. Born 2000 4066796 406605–608 (2000).

    CAS Google Scholar

  • Qiu, X., Guo, J., Xu, J. & Hildebrandt, N. Three-dimensional FRET multiplexing for DNA quantification with attomolar detection limits. J. Phys. Chem. Lett. 94379–4384 (2018).

    CAS PubMed Article Google Scholar

  • Y, W. et al. Rapid Sequential in Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells and Tissues. Nano Lett. 176131–6139 (2017).

    ADS Article CAS Google Scholar

  • Guo, J., Wang, S., Dai, N., Teo, YN & Kool, ET Multispectral labeling of antibodies with polyfluorophores on a DNA backbone and application in cellular imaging. Proc. Natl Acad. Sci. USA 1083493–3498 (2011).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Ju, J., Ruan, C., Fuller, CW, Glazer, AN & Mathies RA Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc. Natl Acad. Sci. USA 924347–4351 (1995).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Ashkenasy, N., Sánchez-Quesada, J., Bayley, H. & Ghadiri, M.R. Recognizing a single base in an individual DNA strand: A step toward DNA sequencing in nanopores. Angew. Chem. – International Ed. 441401–1404 (2005).

    CAS Article Google Scholar

  • Stoddart, D., Heron, AJ, Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl Acad. Sci. USA 1067702–7707 (2009).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Gu, LQ, Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398686–690 (1999).

    ADS CAS PubMed Article Google Scholar

  • Rotem, D., Jayasinghe, L., Salichou, M. & Bayley, H. Protein detection by nanopores equipped with aptamers. J. Am. Chem. I am. 1342781–2787 (2012).

    CAS PubMed PubMed Central Article Google Scholar

  • Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. born Biotechnol. 38176–181 (2020).

    CAS PubMed Article Google Scholar

  • Jain, M., Olsen, HE, Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 171–11 (2016).

    Article CAS Google Scholar

  • Ding, T. et al. DNA nanotechnology assisted nanopore-based analysis. Nucleic Acids Res. 482791–2806 (2020).

    CAS PubMed PubMed Central Article Google Scholar

  • Ohara, M., Takinoue, M. & Kawano, R. Nanopore logic operation with DNA to RNA transcription in a droplet system. ACS Synth. Biol. 61427–1432 (2017).

    CAS PubMed Article Google Scholar

  • Ohara, M., Sekiya, Y. & Kawano, R. Hairpin DNA unzipping analysis using a biological nanopore array. Electrochemistry 84338–341 (2016).

    CAS Article Google Scholar

  • Yasuga, H. et al. Logic gate operation by DNA translocation through biological nanopores. PLoS One 11e0149667 (2016).

    PubMed PubMed Central Article CAS Google Scholar

  • Zhu, Z., Wu, R. & Li, B. Exploration of solid-state nanopores in characterizing reaction mixtures generated from a catalytic DNA assembly circuit. Chem. Sci. 101953–1961 (2019).

    CAS PubMed Article Google Scholar

  • Kong, J., Zhu, J. & Keyser, UF Single molecule based SNP detection using designed DNA carriers and solid-state nanopores. Chem. Commun. 53436–439 (2016).

    Article CAS Google Scholar

  • Wang, Y., Zheng, D., Tan, Q., Wang, MX & Gu, LQ Nanopore-based detection of circulating microRNAs in lung cancer patients. born Nanotechnol. 6668–674 (2011).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Tian, ​​K., He, Z., Wang, Y., Chen, SJ & Gu, LQ Designing a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore. ACS Nano 73962–3969 (2013).

    CAS PubMed PubMed Central Article Google Scholar

  • Zhang, X., Wang, Y., Fricke, BL & Gu, LQ Programming nanopore ion flow for encoded multiplex microRNA detection. ACS Nano 83444–3450 (2014).

    CAS PubMed PubMed Central Article Google Scholar

  • An, N., Fleming, AM, White, HS & Burrows, CJ Crown ether-electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proc. Natl Acad. Sci. USA 10911504–11509 (2012).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Schibel, AEP et al. Nanopore detection of 8-oxo-7,8-dihydro-2′-deoxyguanosine in immobilized single-stranded DNA via adduct formation to the DNA damage site. J. Am. Chem. I am. 13217992–17995 (2010).

    CAS PubMed PubMed Central Article Google Scholar

  • Cardozo, N. et al. Multiplexed direct detection of barcoded protein reporters on a nanopore array. born Biotechnol. 20211–5 (2021).

  • Chen, X. Expanding the rule set of DNA circuitry with associative toehold activation. J. Am. Chem. I am. 134263–271 (2012).

    CAS PubMed Article Google Scholar

  • GitHub – nanoporetech/kmer_models: Predictive kmer models for development use. https://github.com/nanoporetech/kmer_models.

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proc. IEEE Comput. I am. conference computer see Pattern Recognized. 2016770–778 (2016).

    Google Scholar

  • Roush, S. & Slack, FJ The let-7 family of microRNAs. Trends Cell Biol. 18505–516 (2008).

    CAS PubMed Article Google Scholar

  • Chen, SX & Seelig, G. An engineered kinetic amplification mechanism for single nucleotide variant discrimination by DNA hybridization tests. J. Am. Chem. I am. 1385076–5086 (2016).

    CAS PubMed Article Google Scholar

  • Tabatabaei, SK et al. Expanding the molecular alphabet of DNA-based data storage systems with neural network nanopore readout processing. Nano Lett. 221905–1914 (2022).

    ADS PubMed PubMed Central Article CAS Google Scholar

  • Mathé, J., Visram, H., Viasnoff, V., Rabin, Y. & Meller, A. Nanopore unzipping of individual DNA hairpin molecules. Biophys. J. 873205–3212 (2004).

    ADS PubMed PubMed Central Article CAS Google Scholar

  • Celaya, G., Perales-Calvo, J., Muga, A., Moro, F. & Rodriguez-Larrea, D. Label-free, multiplexed, single-molecule analysis of protein-DNA complexes with nanopores. ACS Nano 115815–5825 (2017).

    CAS PubMed Article Google Scholar

  • Derrington, IM et al. Subangstrom single-molecule measurements of motor proteins using a nanopore. born Biotechnol. 331073–1075 (2015).

    CAS PubMed PubMed Central Article Google Scholar

  • Adam, G. & Delbrück, M. Reduction of dimensionality in biological diffusion processes. Struct. Chem. Mol. Biol. (1968) https://collections.archives.caltech.edu/repositories/2/archival_objects/20071.

  • Zhu, D. et al. Cancer-specific microRNA analysis with a nonenzymatic nucleic acid circuit. ACS Appl. Mater. Interfaces 1111220–11226 (2019).

    CAS PubMed Article Google Scholar

  • Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Sci. (80-.) 3331307–1311 (2011).

    ADS CAS Article Google Scholar

  • Choi, HMT et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. born Biotechnol. 281208–1212 (2010).

    CAS PubMed PubMed Central Article Google Scholar

    Leave a Comment